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A Method for Computing Bessel Function Integrals
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A method for numerical calculation of integrals containing Bessel functions of integer or
integer plus one-half order is described. The calculation involves first a one-dimensional
Fourier sine or cosine transform followed by evaluation of the coeflicient of the Chebyshev
series of the Fourier-transformed function in the case of the Bessel function and evaluation of
the Legendre expansion coefficient in the case of the spherical Bessel function. A
generalization of the method for the computation of an integral involving the Bessel function
of arbitrary real order v is presented as well. . 1988 Academic Press, Inc.

1. INTRODUCTION

We consider the numerical computation of an integral
Fy)=dy= [ x= f(x) I (y¥) dx, (1)
0

where J,(yx) is the Bessel function of the first kind and of order v, and v, y are
arbitrary positive real numbers. Special cases of this integral are the Bessel trans-
form (also called the Fourier—Bessel or the Hankel transform) when v is an integer
and o=1, =0, and 4 =2m,

Fo(3)=2n | xf(x) J,(yx) dx (2)

and the spherical Bessel transform when v is an integer plus one-half v=/+4 and
6=2, u=4%and 4=4n(n/2)"7,

F(y)=4n (g) ( f: XN yx) "2 J 1y 1 0(px) dx

=dm | 2f () yx) di, (3)

where j(x) is now the spherical Bessel function.
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BESSEL FUNCTION INTEGRALS

For the large values of y the integrands of (2) or (3) are rapidly oscillating
functions and one must either divide the integral over infinite interval into a sum of
integrals over finite intervals between the zeros of the the Bessel functions [ 1, 2] or
use special methods. Several procedures have been described in the literature [37;
one can either approximate the function f(x) by a truncated series of Chebyshev
polynomials [4] so that the resulting integrals (so called modified moments of
J,(x}) can be calculated exactly or one can expand it into Laguerre polynomials
5] whose Hankel transforms are known. Other approaches of interest are
procedures which are based on the fast Fourier transform (FFT) algorithms: one
can replace the argument y and the integration variable x by exponential variables
and transform the Bessel integral into a correlation or a convolution integral which
can be evaluated by FFT [6, 7] or by some other means [87]. Candel [97] has used
the generating function expansion of the Bessel function to convert the integral {2}
into two successive Fourier transforms which again can be caiculated with FFT.
One can also use the projection slice theorem to compute the Hankel transform
from the one-dimensional fast Fourier transform of the projection of the function
onto the real x-axis [10]. The spherical Bessel function integral (3) was computed
by Sommer and Zabolitsky using an extended Filon’s integration formula [11].

In this paper we present a method where the integral (!} is transformed to a
Fourier sine or cosine transform followed by the integration of the transformed
function over the finite interval ( — y, y). The weight function of the latter integral is
the Chebyshev polynomial in the case of the Bessel integral and the Legendre
polynomial in the case of the spherical Bessel integral.

2. METHOD

At first we calculate the Fourier sine transform if k= v — i is odd or the Fourier
cosine transform if k is even, where we have to choose v so that k is an integer

Tiy=2 L, Xf(x)sin(tx) dx,  if k=v—pisodd

{4}
Fy=2[" x7f(x)cos(x)dx,  if k=v—piseven.
0
Substituting the inverse transforms
1= _
Xf(x)=— j F(t) sin(xr) dr

Yo
(5)

1 ~oe

X°f(x) =— JO F(t) cos{xt) dt
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into (1) we obtain
Fn="2—[" 10y eur.0a (6)
T

when the auxiliary function @,(y, ¢) is.defined by

Dy, 1)= J:C X Mo 14 u(¥x) sin(tx) dx, where k=2m+1is odd,
(7)

D (y,1)= fo X Ty 4 u(x) cos(tx) dx, where &k =2miseven,

and m is a natural number. These integrals can be calculated in closed form in
terms of the Gegenbauer polynomials C#(x) [12],

D (y,t)=0, when 1>y
Dy, )= (—1)" Q2y)y*~ " k! I'(w)
x CHt/y WL — 3/ y* Y~ Y2 [ Mk +2u)] 7, when 0<r<y, (8)

where m= (k—1)/2 if k is odd and m=£k/2 if k is even.

The Bessel and the spherical Bessel transforms (2) and (3) are then expressed as
special cases of (6) using the relations u=0, k=v—pu=mn, lim,_ , I'(p) C{(x)=
2T (x)kand u=1, k=v—pu=1 C}¥(x)= P (x) [13], respectively; the final form of
Eq. (2) (the Bessel integral) is then

— 1)y o i ) .
=R Ry 1) de ©)

while for Eq. (3) (the spherical Bessel integral) we obtain

F(y)=

SEE[ R e (10)

where T, is the Chebyshev polynomial and P, is the Legendre polynomial.
Linz [147] earlier derived the result of Eq. (9) for the Bessel function Jy(x) by
means of an Abel transform. In this case the integral (9) is simply

Fo_o=2 JO’ (32— )12 [2 j: Xf(x) cos(tx) dx] dt. (11)

Also, Mook recently used the Abel transform to calculate the zeroth order Hankel
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transform [15]. The change of the variable 1 = y cos 6 in Eq. (9) yields an equation
which is quite similar to that used by Candel for the Bessel transform [9],

Fo(y)={=1y" " F(» cos 8) cos(nf) db. e‘

J0

h..
R
—

In addition, we note that the formulas related to Egs. (9) and (10) are discussed
in Section 3.2 of the survey of the Bessel function integrais by Piessens and
Branders [3].

The calculation of the Bessel integrals is thus reduced to computation of the
Chebyshev series coeflicient or to computation of the Legendre expansion coef-
ficient of the one-dimensional Fourier transform of f{x). The Fourier transforms
can be calculated using either FFT [16] or the adaptive procedure of Piessens and
Branders [1, 17] by introducing the upper limit cutoff X, in the infinite range
integrals (4). We have used the latter approach since then one can choose the
abscissae of 7{z), whereas if FFT is used one has to interpolate to obtain the values
of f(1) on the Chebyshev abscissae ¢ ; = cos(jn/N) in Clenshaw-Curtis rules or if one
uses adaptive integration routines to calculate integrals {9) and (10). In the present
paper we have employed the NAG routine DO1ANF [ 18] which is based on the
QUADPACK routine QAWF of Piessens er al. [1]. If the FFT is used the
computation of the integral (9) can be made with the algorithm presented by
Candel [9]

The Chebyshev coefficient can be calculated by the QUADPACK routine QAWS
or by the equivalent NAG routine DOIAPF while the Legendre coefficient can be
calculated using any integrator appropriate to smooth functions, e.g., either QNS
or QAG of QUADPACK or ecither DOIAJF or DOIAHF of NAG. Another
possibility to calculate the Chebyshev series coefficients is to use the recurrence
relations due to Clenshaw [19,20] and we have have used the NAG routine
EO02AFF which is a modification of this algorithm. Piessens [21] has developed an
algorithm (LEGSER, Algorithm 473 of CACM) for calculation of the Legendre
expansion coefficient when the Chebyshev series coefficients of the function are
known.

3. NUMERICAL EXAMPLES

We have tested our method using some commonly used integrals found in
literature on the subject [4, 9, 22, 237. In the case of the Bessel transform we
consider integrals

XL

Liy)= L» e =27 (¥x) dx

—:}‘»"[(4—,—_)‘2)12—2]" (4_%-;,2)712 “3}



338 M. PUOSKARI

= sin(bx)
L(y) :J;) -xwfn

_ b (y/b)" sin(nr/2)
—bzn [1 + (1 _yZ/bZ)l/Z:Ina

(vx)dx

for O0<y<b

1 . .
=75 sin[ r arc sin(b/ y) ], for y>b. (14)

The first integral was used by Piessens and Branders [4] to test their Bessel
function integrator bases on the Chebyshev series expansion of f(x) and the second
one is a special case of the Weber—Schafheitlin integral and was used by Candel [9]
in his FFT calculations.

In the case of the spherical Bessel transform we compute the integral

I, =f x9N (px) dx
0]

=2[+l(’l+ 1)!ayl(a2+yZ)~(l+2) (15)

which was also used as a test integral by Talman [7, 23] and by Sommer and
Zabolitsky [117].

The Fourier integrals are computed using the automatic Fourier integrator
DO1ANF of the NAG library with requested relative accuracy EPSREL (which was
in our calculation typically 10 ~* or 10~*). The integrals in (9) and (10) have been
evaluated with two different methods: the Chebyshev coefficients or the Legendre
series coefficients were computed either by a recurrence relation method of
Clenshaw or by direct numerical integration methods. We calculated the Chebyshev
coefficients using the NAG routine EO2AFF. The same routine was employed to
calculate the Chebyshev coefficients of f(¢) in (10) whereafter the Legendre series
coefficients were computed by the routine LEGSER of Piessens [21]. The integrals
(9) and (10) were also computed by the adaptive NAG routines DOIAPF and
DO1AHF, respectively, with the requested relative accuracy of 10~* for DOIAHF
and 107 for DO1APF.

The resume of the integration routines and input parameters which are actualily
needed in the present computation is presented in Table I. The input parameters in
the adaptive integration method were the upper limit of the Fourier integral XMAX
and the requested relative accuracy EPSREL in the NAG integration routines. In
the recurrence relation method the additional input parameter was the number of
the points N, where the Fourier integral f(z) has to be calculated, which is
equivalent to the number of Chebyshev coefficients used in the NAG routine
EO02AFF.

The computations were carried out on VAX11/730 and on IBM3083 using
double precision arithmetic. The absolute errors of the numerical integration
together with the exact values of the integrals are presented in Talbe Il for the
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TABLE I

Combinations of NAG Routines Which Were Used in Evaluation of
the Bessel Integrais /; and /, and
the Spherical Bessel Integral I; with the Recurrence Relation Method (Method 1) or
with the Adaptive Numerical Integration Method (Method 2) and
the Input Parameters Which Are Needed in the Integration Routines

Method 1 Method 2
Calculation of the
Fourier integral (4) DOIANF DOtANF
Calculation of the
Bessel integral (9} EO2AFF DO1APEF
Calculation of the
spherical Bessel integral (10} EO2AFF + LEGSER DGIAHF
Input parameters EPSREL = EPSREL =
the required relative accuracy the required relative accuracy
XMAX = XMAX =

the upper limit
of the Fourier integral

the upper limit
of the Fourier integral
N=
the number of points
where the Fourier integral
is calculated

TABLE I
Integral 7, (13) Calculated with XMAX =30

Method 1 Method 2

" ¥ Exact integral Absolute error Absolute error
] 1 0.44721360 0954 x10-1* —0.790x 101!
10 0.98058068 x 10! 0.541x10-1 —0.756 x 107

100 0.99980006 x 102 0676 x 10— 0.367x 1073
1000 0.99999800 x 103 0.673x 1678 0.620x 1073¢

5 10 0.36310584 x 10! —0.729x 1071 0923 x 101

100 0.90466253 x 102 0.752x 101 —0.406 x 1G—°

1000 0.99004786 x 103 —0.673x 108 —-0.127x 1073

10 1 0.24037306 x 10~° ~0.326 x 10~ 0364 x 101
10 0.13445692 x 10! 0489 x 1013 —0.291 x 16~
100 0.81857797 x 102 0.676 x 1014 0367 x 1073
1000 0.98019673 x 102 —0.673x 1078 0.685 x 1432

¢ The requested tolerance in the DOIAPF integration routine was not achieved due to a bad local

integrand behavior.

Note. In the recurrence relation method (Method 1) EPSREL =10"* and N =250 for y =1, 10 and
N=2000 for y=100, 1000, while in the adaptive numerical integration method
EPSREL =103 for y =1, 10, and 102 for y = 100, 1000, and for all values of y in the case of n=10.

{Method 2)
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TABLE I

Integral 7 (15) Calculated with XMAX =40 and a=2

Method 1 Method 2
n y Exact integral Absolute error Absolute error
0 0.1 0.24875462 —0.104 x 1016 —0.693x 1017
1 0.16000000 0.201 x 105 0.298 x 10~1°
5 0.47562426 x 102 0.285x 1016 0.144 x 10~7
10 0.36982246 x 103 0.210x 106 ~0.764 x 1010
20 0.24507401 x 10—* ~0.236x 10~V 0.103 x 1016
50 0.63795690 x 10—¢ 0.221x 1016 0.122x 10~12
100 0.39968019 x 107 0.963x 10~ 0.760 x 10~13
5 0.1 0.55275395x 104 ~0.608 x 1016 —0.311x10° 1
1 0.11796480 x 10 +! —0.501 x 10-1© —0.815x 1077
5 0.16695772 x 10! —0.814x 1012 0420x10~8
10 0.70034026 x 10—+ —0.196 x 1012 —0.262x 10712
20 0.16788925 x 10~¢ —0921 x 101 0.652x 10~ 1
50 0.46660804 x 1010 0324x 101 0.368 x 1013
100 0.91902364 x 1013 —0.466 x 1014 0.343x 10" 1B=

¢ Roundoff errors inthe DOIANF routine prevented the requested tolerance from being achieved.

Note. In the recurrence relation method (Method 1) EPSREL =10~* and N=250 for y <20 and
N=1000 for y=50, 100, while in the adaptive numerical integration method (Method 2)
EPSREL =10—*

Bessel function integral 7, (13) and in Table Il for the spherical Bessel function
integral 7; (15). In Fig. | the result for the integral /, (14) are compared with the
exact values of that integral.

The results from the Clenshaw recurrence relation method are accurate to more
than 10 decimal places for the smooth integrals (13) and (15) except for the very
large values of y in the Bessel integral (13), where the accuracy was about 6-8
decimal places. The results from the direct integrations of the Chebyshev and the
Legendre series coefficients are accurate to about 7-8 decimal places in most cases.
The routine DOIAHF which is based on the optionally extended Gauss rules in an
adaptive strategy due to Patterson [24] turned out to be faster than the routine
DO1AJF in computation of the Legendre series coefficient (10). We found that the
routine DOIAPF failed in calculation of the Chebyshev coefficient for large values
of y. The accuracy of the integral 7, (14) (which is about 5 decimal places) is limited
by the upper limit cutoff of the Fourier integral XMAX = 150, where the value of
the integrand is about the same order as the obtained absolute error of the
calculation. The accuracy of the results of the integral 7, were yet two decades
poorer at y=>»b where the first derivative of the integral is discontinuous. In the
scale of Fig. 1 our results for 7, are similar to Candel’s FFT calculations [9], except
for the case of /=7 when y=~b=0.2, where our estimates seem to be inferior to
those of Candel.
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Fic. 1. The Bessel integral I, (14) for b=0.2. The exact integrals are represented as solid lines,
Estimates from numerical computations with the recurrence relation method {Method 1) are represented
by dots (- ). The input parameters are XMAX = 150, N =500, and EPSREL =10-* (A)/=0; (B) i=1;
{Cyi="17

4. A GENERALIZATION

Lastly we present a numerical calculation of the general Bessel integral {1}
Expressing Gegenbauer polynomials in terms of the hypergeometric function 27,
(131,

Ik+w)

I 1—x N
Cﬁ(Y)zk_‘F(—ZT)‘ZFl(k‘*‘zﬂ. —‘k,[J‘*‘E, 5 ), (1165
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we obtain from Egs. (6) and (8) for the Bessel integral,

_Ay‘2y2”"lf(,u)

(y)= —_— _1m.y t‘,2_ 23— 12
PN =5 g (D] T =)
11—ty
of (et 2~k et 3252 (17)
27 2
where m = (k—1)/2 when k is odd and m =k/2 when k is even.
To test Eq. (17) we evaluate the integral
W= [ e
0
Yy vI(B+v) (v+ﬂ v+p+1 =y .
“ndroint\ 3T i) (18)

This integral reduces to the integral (1) when we choose 4= y* and f=0c+1—p.
The parameter u has to be chosen so that k£ =v— u is an integer and preferably also
u=1to avoid the end-point singularities in Eq. (17). The results for several values
of v, B, and p are given in Table IV. The Fourier integrals were again calculated by
the NAG routine DOIANF and the integral (17) was computed using the routine
DO1AHF with a requested relative accuracy of 10 ~*. The hypergeometric function

TABLE IV
Integral 7, (18) Calculated with XMAX =30 and a=2

v B g u y Exact integral Absolute error
1 0 0 0 1 0.23606798 ~0.296 x 103
10 0.81980390 0.142x 107

100 0.98019998 0.113x 103

10 0 0 1 1 0.53749050 x 10~7 —0.136 x 1010
100 0.81874167x 10! —0.262x10~¢

0.5 235 2 0.5 10 093311117 x 1073 —0.158 x 10~?
100 0.31557004 x 10 ¢ -0.333x10-8

1.5 25 2 0.5 1 0.63830767 x 10! 0.237x1073
100 0.15944926 x 10 ~* -0.672x 10~

10.5 25 2 0.5 10 0.13132359 x 10! —0.348 x 1010
100 0.27586445 x 103 0.203x 1014

1.25 1.75 2 1.25 10 0.17833078 x 10! 0.565x 10~*
100 0.37863949 x 10 ~3 —0.161x 108

0.75 225 2 0.75 10 0.18978529 x 10 ~2 —0270x 1077
4.75 225 2 0.75 1 0.15316299 x 10 ~* 0.115x10~%
100 0.20172978 x 102 0.841 x 108

Note. The adaptive numerical integration routine DO1AHF is used with EPSREL =10-4
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»F| is computed using the algorithm R2F1 presented by Luke [25] for the rationai
approximation of , F,(a, b; ¢; —z). The accuracy of the results is seen to be at least
6 decimal places in most cases and usually even more.

5. CONCLUSIONS

We have presented a new method for the computation of integrals of the form (2)
or (3). The method can be generalized also for calculation of the general Bessel
function integral (1) even if v is not an integer or an integer plus one-half.

The adaptive integration procedure converged rather slowly when the argument
y is large (especially in the case of the Bessel integral). The recurrence relation
method of Clenshaw in the calculation of the Chebyshev coefficient (9) is faster but
for larger values of the argument y also, this method requires computation of a
rather larger number of points of the Fourier transform f(¢). It has, however, the
advantage that all odd (or even) order transforms can be calculated simultaneously.

If one wants to compute the integrals efficiently for many values of the argument
» simultaneously it is probably better to construct an algorithm which employs
FFT in computation of the Fourier transforms as well as of the Chebyshev coef-
ficient, rather than using the present library routines.
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